

### CDF Run 2 Computing Requirements

### Kevin McFarland Run 2 Computing Review June 4, 2002

- 1. History and Inputs
- 2. Model Overview
- 3. Summary of Needs

### Planning to Plan

- Original Long Range Planning effort: CDF 4100, March 1997
  - $\hookrightarrow$  Scope of plan 2fb<sup>-1</sup>, 2 years (1999-2001)
  - → Things we know now:
    - ★ We will take longer to reach 2fb<sup>-1</sup>
    - $\star$  CPU and Disk cheaper by time of  $2 \text{fb}^{-1}$
    - \* CPU needs are much greater than envisioned
      - · Si detector, event "I/O", exclusive reconstruction
- Current Planning Effort:
   CDF CAF and DH Reviews (Oct '01-Feb '02)
  - → CAF review documents:
    - ⋆ CDF5743: CAF Benchmarking
    - ⋆ CDF5787: CDF Physics Needs Assessments
    - ⋆ CDF5802: CAF Report
  - → Input from CDF "physics" (analysis) groups drives this
    - Usage pattern for archive is different than originally planned in March '97
      - Informed by early Run 2 analysis
    - \* Large needs for permanent disk-resident data
    - \* Significant non-detector data: ntuples, MC, etc.

# CDF DAQ/Analysis Architecture



# Computing Model in Broad Brush

Production, Analysis, Monte Carlo largely central Large needs imply a network-based system

- Data archive network attached (Enstore, dCache)
  - → Long-term directions are more "GRID-inspired" approaches, e.g. SAM
  - → dCache is transport engine (central systems)

    (Jeff Tseng's talk, Rick St. Dennis' talk)
- Disk caches and static disk are network attached
  - → Many few-TB scale RAID fileservers
- CPU provided through "PC pile" approach
  - → Familiar from successful Level-3, Production farms
  - → Small number of SMPs (Linux) as interactive nodes in initial stages

(Frank Wuerthwein's talk)

- Heavy emphasis on central networking
  - → We believe expansion of our existing infrastructure will be sufficient to cover this

    (Rob Harris' talk)
- Tight collaboration with FNAL-CD
   (Don Petravick's talk, Garzoglio/Pordes talks)

### Luminosity Profile

FNAL Run 2 Luminosity profile(April 2002)

```
Total (fb<sup>-1</sup>) Yearly (fb<sup>-1</sup>) Peak (\times 10^{32})
\mathbf{FY}
2002
              0.3
                                0.3
                                                    0.3
              1.2
2003
                                0.9
                                                    1.0
2004
              2.5
                                1.3
                                                    1.4
              4.1
2005
                                1.6
                                                    4.0
              7.6
                                3.5
2006
                                                    4.0
2007
             11.3
                                3.7
                                                    4.0
2008
             15.0
                                3.7
                                                    4.0
```

- From L to Raw Events
  - $\hookrightarrow$  Physics trigger cross-section is assumed to be the Run "IIa" ( $2 {
    m fb}^{-1}$ ) design value
    - $\star$  Assumes high  $p_T$  (Higgs, top, SUSY) and low  $p_T$  (B) are on the menu throughout Run II

## Luminosity Profile (cont'd)

- → Peak raw data rate is (roughly) 20 MB/s peak, must increase to 70 MB/s in FY05
  - Note that full rate capability is used during FY02-03 commissioning, regardless of luminosity
  - ★ Average rate is 1/3 of peak rate (accelerator duty factor)
  - $\star$  In FY02, FY05 (commissioning, "Run IIb" shutdown), assume 1/6 duty factor
  - \* Assumed growth of event size with  $\mathcal{L}$  is modest (FY05 transition to 132 ns bunch spacing)



- → Reprocessing occurs rarely
  - ⋆ Very different than, e.g., BaBar strategy
- Needs scale roughly with peak or integrated luminosity

### How Do Requirements Scale?

### User CPU Bottom-up estimate, 1.1 THz/fb<sup>-1</sup>

- Includes 1/3 contingency, 10% for R&D needs
- Where does this come from?
  - $\hookrightarrow$  2fb<sup>-1</sup> $\Rightarrow$  2 × 10<sup>9</sup> events
  - $\hookrightarrow$  Peak Requirement: "Light" analysis (e.g., ntuple creation) by 200 users of  $\sigma=5$  nb per day
    - $\star$  A  $\sigma=5$  nb sample is, e.g., loose  $W\to e\nu$  samples  $5\times 10^6 \mbox{/fb}$
    - $\star$  In other words, equivalent of full data set/day, roughly  $25 \times 10^3$  events/sec
  - → Analysis benchmarks: "TrackTest", "Stnmaker"
    - \* Track test:  $b\overline{b}$  MC sample, sift through track list looking for  $D^+ \to K^+\pi^+\pi^-$ ,  $B^+ \to \phi K^+$
    - $\star$  Stnmaker:  $t\overline{t}$  MC sample, fill production quantities into extensive ntuple
    - ★ Each takes 0.1 GHz-ms per event

## Requirements (cont'd)

# Production CPU: Estimate driven by current experience (3–5 GHz-sec/event)

- RAW production stable; uncertainty reflects not knowing how code operates at high  $\mathcal L$
- Monte Carlo bottom-up estimate: 1.2×10<sup>6</sup> events/day/fb<sup>-1</sup>



## Requirements (cont'd)

# "Static" Disk needs are large (bottom-up estimates of CDF Physics groups, CDF 5914)

- Monte Carlo and "User" data, one static instance
- Produced output ("PADs", single instance) 70% static
  - $\rightarrow$  Assume 100 5nb datasets  $\Rightarrow$  150 TB/2fb<sup>-1</sup>
- Usage is 60%–20%–20% for PADs–MC–User

#### Read/Write Disk Cache: smaller than static

• Rough model: 35/10 TB/fb<sup>-1</sup>, or 7%/2% of archive size

# **Disk I/O** dominated by reading this static disk by User CPU, 1.0 MB/s/GHz

Well below expected fileserver performance



# Requirements (cont'd)

### Archive I/O includes raw, PADs, 2ndary, MC

- Writing: RAW and PADs dominate (very predictable with luminosity)
- Copying to new archives: important in FY03, FY05 (see Rob Harris' technology evolution model)
- Read: User analysis



### Archive Volume (as above)



### Integrated Needs and Purchasing

- Archive media, User CPU, Static disk are most significant constant needs
- Three or four year obsolesence cycles assumed
- Archive capacity, I/O can be accommodated with discrete upgrades in FY03, FY05
- Long-term extrapolation works, assuming 18 month doubling of price/performance improvements
- Costs are ramping down for FY07, 08



#### Conclusions

- "Needs" have changed significantly from 1997 estimates
  - $\hookrightarrow$  2fb<sup>-1</sup> $\rightarrow$  15fb<sup>-1</sup>, ×2 instantaneous  $\mathcal{L}$
  - $\hookrightarrow$  1999-2001  $\rightarrow$  2002-2008
  - → CPU and disk usage, primarily in user analysis
- Phenomenal advances in network bandwidth, storage and CPU capacity provide a solution
  - → Moved from large SMP, direct-attached resource model
  - → To network-based services from commodity components
- Total project resources (2008)
  - → 20 THz of CPU
  - $\hookrightarrow$  2.5 PB of disk
  - $\hookrightarrow$  6 PB of tape, 1 GB/s to/from tape
- Subsequent talks
  - → Technology (Tseng, Wuerthwein, St. Dennis)
  - → Pricetag & Upgrade Model (Harris)